Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
Protein Sci ; 33(4): e4937, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501488

RESUMO

Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.


Assuntos
Clostridium thermocellum , 60634 , Clostridium thermocellum/química , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Complexos Multienzimáticos , Proteínas de Bactérias/química
2.
J Am Chem Soc ; 145(44): 23994-24004, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870432

RESUMO

In the nucleus, transcriptionally silent genes are sequestered into heterochromatin compartments comprising nucleosomes decorated with histone H3 Lys9 trimethylation and a protein called HP1α. This protein can form liquid-liquid droplets in vitro and potentially organize heterochromatin through a phase separation mechanism that is promoted by phosphorylation. Elucidating the molecular interactions that drive HP1α phase separation and its consequences on nucleosome structure and dynamics has been challenging due to the viscous and heterogeneous nature of such assemblies. Here, we tackle this problem by a combination of solution and solid-state NMR spectroscopy, which allows us to dissect the interactions of phosphorylated HP1α with nucleosomes in the context of phase separation. Our experiments indicate that phosphorylated human HP1α does not cause any major rearrangements to the nucleosome core, in contrast to the yeast homologue Swi6. Instead, HP1α interacts specifically with the methylated H3 tails and slows the dynamics of the H4 tails. Our results shed light on how phosphorylated HP1α proteins may regulate the heterochromatin landscape, while our approach provides an atomic resolution view of a heterogeneous and dynamic biological system regulated by a complex network of interactions and post-translational modifications.


Assuntos
Heterocromatina , Nucleossomos , Humanos , Histonas/química , Proteínas Cromossômicas não Histona/química , Fosforilação , Fatores de Transcrição/metabolismo
3.
Protein Sci ; 32(9): e4752, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37574751

RESUMO

BAZ2A promotes migration and invasion in prostate cancer. Two chemical probes, the specific BAZ2-ICR, and the BAZ2/BRD9 cross-reactive GSK2801, interfere with the recognition of acetylated lysines in histones by the bromodomains of BAZ2A and of its BAZ2B paralog. The two chemical probes were tested in prostate cancer cell lines with opposite androgen susceptibility. BAZ2-ICR and GSK2801 showed different cellular efficacies in accordance with their unequal selectivity profiles. Concurrent inhibition of BAZ2 and BRD9 did not reproduce the effects observed with GSK2801, indicating possible off-targets for this chemical probe. On the other hand, the single BAZ2 inhibition by BAZ2-ICR did not phenocopy genetic ablation, demonstrating that bromodomain interference is not sufficient to strongly affect BAZ2A functionality and suggesting a PROTAC-based chemical ablation as an alternative optimization strategy and a possible therapeutic approach. In this context, we also present the crystallographic structures of BAZ2A in complex with the above chemical probes. Binding poses of TP-238 and GSK4027, chemical probes for the bromodomain subfamily I, and two ligands of the CBP/EP300 bromodomains identify additional headgroups for the development of BAZ2A ligands.


Assuntos
Indolizinas , Neoplasias da Próstata , Fatores Genéricos de Transcrição , Masculino , Humanos , Ligantes , Proteínas Cromossômicas não Histona/química , Indolizinas/farmacologia , Fatores de Transcrição/metabolismo
4.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358475

RESUMO

Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that lead to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA that provides a simple graphical user interface requiring only a gene name; integrates widely used molecular evolution tools to detect positive selection in rodents, primates, carnivores, birds, and flies; and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 centromere proteins, we find statistical evidence of positive selection within loops and turns of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of mouse CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.


Assuntos
Centrômero , Biologia Computacional , Simulação por Computador , Evolução Molecular , Proteínas , Animais , Camundongos , Ratos , Aves , Biologia Celular , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Biologia Computacional/métodos , Drosophila , Primatas , Domínios Proteicos/genética , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
5.
Curr Opin Struct Biol ; 81: 102638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343495

RESUMO

Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.


Assuntos
Cromatina , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/metabolismo , Nucleossomos , DNA/metabolismo
6.
EMBO J ; 42(12): e110286, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37082862

RESUMO

Despite advances in the identification of chromatin regulators and genome interactions, the principles of higher-order chromatin structure have remained elusive. Here, we applied FLIM-FRET microscopy to analyse, in living cells, the spatial organisation of nanometre range proximity between nucleosomes, which we called "nanocompaction." Both in naive embryonic stem cells (ESCs) and in ESC-derived epiblast-like cells (EpiLCs), we find that, contrary to expectations, constitutive heterochromatin is much less compacted than bulk chromatin. The opposite was observed in fixed cells. HP1α knockdown increased nanocompaction in living ESCs, but this was overridden by loss of HP1ß, indicating the existence of a dynamic HP1-dependent low compaction state in pluripotent cells. Depletion of H4K20me2/3 abrogated nanocompaction, while increased H4K20me3 levels accompanied the nuclear reorganisation during EpiLCs induction. Finally, the knockout of the nuclear cellular-proliferation marker Ki-67 strongly reduced both interphase and mitotic heterochromatin nanocompaction in ESCs. Our data indicate that, contrary to prevailing models, heterochromatin is not highly compacted at the nanoscale but resides in a dynamic low nanocompaction state that depends on H4K20me2/3, the balance between HP1 isoforms, and Ki-67.


Assuntos
Proteínas Cromossômicas não Histona , Heterocromatina , Heterocromatina/genética , Antígeno Ki-67/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/química , Cromatina , Células-Tronco Embrionárias
7.
J Reprod Dev ; 69(2): 78-86, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36740274

RESUMO

RAD2lL and REC8, meiosis-specific paralogs of the canonical cohesin subunit RAD21, are essential for proper formation of axial/lateral elements of the synaptonemal complex, synapsis of homologous chromosomes, and crossover recombination in mammalian meiosis. However, how many meiotic cohesins are present in germ cells has not been investigated because of the lack of an appropriate method of analysis. In the present study, to examine the intracellular amount of meiotic cohesins, we generated two strains of knock-in (KI) mice that expressed a 3×FLAG-tag at the C-terminus of RAD21L or REC8 protein using the CRISPR/Cas9 genome editing system. Both KI mice were fertile. Western blot analyses and immunocytochemical studies revealed that expression levels and localization patterns of both RAD21L-3×FLAG and REC8-3×FLAG in KI mice were similar to those in wild-type mice. After confirming that tagging of endogenous RAD21L and REC8 with 3×FLAG did not affect their expression profiles, we evaluated the levels of RAD21L-3×FLAG and REC8-3×FLAG in the testes of 2-week-old mice in which only RAD21L and REC8 but little RAD21 are expressed in the meiocytes. By comparing the band intensities of testicular RAD21L-3×FLAG and REC8-3×FLAG with 3×FLAG-tagged recombinant proteins of known concentrations in western blot analysis, we found that there were approximately 413,000 RAD21L and 453,000 REC8 molecules per spermatocyte in the early stages of prophase I. These findings provide new insights into the role played by cohesins in the process of meiotic chromosome organization in mammalian germ cells.


Assuntos
Proteínas Nucleares , Espermatócitos , Animais , Masculino , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Meiose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Espermatócitos/metabolismo
8.
Plant Commun ; 4(1): 100428, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065466

RESUMO

The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Cromossômicas não Histona , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Transdução de Sinais , Raios Ultravioleta
9.
Int J Biol Macromol ; 224: 55-67, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252630

RESUMO

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.


Assuntos
Proteínas de Bactérias , Celulossomas , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química
10.
Cell Mol Life Sci ; 79(3): 183, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279775

RESUMO

The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Doenças do Sistema Nervoso/patologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigênese Genética , Evolução Molecular , Humanos , Doenças do Sistema Nervoso/metabolismo , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
11.
Biochem Biophys Res Commun ; 599: 9-16, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35158202

RESUMO

The multi-subunit ATP-dependent chromatin remodeling factor SWI/SNF complex is a fundamental regulator of gene transcription. The SWI/SNF complex in mammals, also called the BAF complex, consists of 9-12 subunits. Genomic functional studies have found that 20%-25% of human cancers are caused by mutations in genes encoding this complex. For the assembly of the BAF complex, BAF47 (SMARCB1), BAF57 (SMARCE1), BAF155 (SMARCC1)/BAF170 (SMARCC2), and BAF60 A/B/C (SMARCD1/2/3) form a core complex. However, the assembly mechanism of the BAF core subunit remains unclear. In this study, the assembly mechanism and structure of this complex and the interactions between its subunits were investigated. We co-expressed SMARCC1(447-966)/SMARCD1(129-471), SMARCC1(447-966)/SMARCE1(210-284) and SMARCC1(862-966)/SMARCE1(210-284) binary complex, SMARCC1(862-966)/SMARCD1(129-471)/SMARCE1(210-284) ternary complex SMARCC1(353-966)/SAMRCD1(129-471)/SMARCB1(110-385)/SAMRCE1(210-284) tetrameric complexes, and obtained crystals of the SMARCC1(862-966)/SMARCE1(210-284) and SMARCC1(883-966)/SMARCE1(210-284) binary complex,and the SMARCC1(883-966)/SMARCE1(210-284) crystal received a set of diffraction data of 3.2 Å. Our experimental results demonstrate the assembly mechanism between the core subunit quaternary complexes of the BAF complex and the interacting amino acid fragment regions and the SMARCC1/SMARCE1 optimal amino acid fragment binary complex crystals. Our study provides a theoretical basis for the development of cancer and related drug research based on protein structure.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/química , Calorimetria , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos/química , Mapas de Interação de Proteínas , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ultracentrifugação
12.
Nat Commun ; 13(1): 93, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013256

RESUMO

Photoreceptors are a class of light-sensing proteins with critical biological functions. UVR8 is the only identified UV photoreceptor in plants and its dimer dissociation upon UV sensing activates UV-protective processes. However, the dissociation mechanism is still poorly understood. Here, by integrating extensive mutations, ultrafast spectroscopy, and computational calculations, we find that the funneled excitation energy in the interfacial tryptophan (Trp) pyramid center drives a directional Trp-Trp charge separation in 80 ps and produces a critical transient Trp anion, enabling its ultrafast charge neutralization with a nearby positive arginine residue in 17 ps to destroy a key salt bridge. A domino effect is then triggered to unzip the strong interfacial interactions, which is facilitated through flooding the interface by channel and interfacial water molecules. These detailed dynamics reveal a unique molecular mechanism of UV-induced dimer monomerization.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Arginina/química , Proteínas Cromossômicas não Histona/química , Triptofano/química , Ânions , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica , Triptofano/metabolismo , Raios Ultravioleta , Água/química , Água/metabolismo
13.
J Mol Biol ; 434(1): 167387, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34883116

RESUMO

The inner centromere protein, INCENP, is crucial for correct chromosome segregation during mitosis. It connects the kinase Aurora B to the inner centromere allowing this kinase to dynamically access its kinetochore targets. However, the function of its central, 440-residue long intrinsically disordered region (IDR) and its multiple phosphorylation sites is unclear. Here, we determined the conformational ensemble of INCENP's IDR, systematically varying the level of phosphorylation, using all-atom and coarse-grain molecular dynamics simulations. Our simulations show that phosphorylation expands INCENP's IDR, both locally and globally, mainly by increasing its overall net charge. The disordered region undergoes critical globule-to-coil conformational transitions and the transition temperature non-monotonically depends on the degree of phosphorylation, with a mildly phosphorylated case of neutral net charge featuring the highest collapse propensity. The IDR transitions from a multitude of globular states, accompanied by several specific internal contacts that reduce INCENP length by loop formation, to weakly interacting and highly extended coiled conformations. Phosphorylation critically shifts the population between these two regimes. It thereby influences cohesiveness and phase behavior of INCENP IDR assemblies, a feature presumably relevant for INCENP's function in the chromosomal passenger complex. Overall, we propose the disordered region of INCENP to act as a phosphorylation-regulated and length-variable component, within the previously defined "dog-leash" model, that thereby regulates how Aurora B reaches its targets for proper chromosome segregation.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Aurora Quinase B/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Transição de Fase , Fosforilação , Conformação Proteica em alfa-Hélice
14.
Mol Cell ; 81(23): 4891-4906.e8, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34739874

RESUMO

The ring-like structural maintenance of chromosomes (SMC) complex MukBEF folds the genome of Escherichia coli and related bacteria into large loops, presumably by active DNA loop extrusion. MukBEF activity within the replication terminus macrodomain is suppressed by the sequence-specific unloader MatP. Here, we present the complete atomic structure of MukBEF in complex with MatP and DNA as determined by electron cryomicroscopy (cryo-EM). The complex binds two distinct DNA double helices corresponding to the arms of a plectonemic loop. MatP-bound DNA threads through the MukBEF ring, while the second DNA is clamped by the kleisin MukF, MukE, and the MukB ATPase heads. Combinatorial cysteine cross-linking confirms this topology of DNA loop entrapment in vivo. Our findings illuminate how a class of near-ubiquitous DNA organizers with important roles in genome maintenance interacts with the bacterial chromosome.


Assuntos
Proteínas Cromossômicas não Histona/química , Cromossomos/ultraestrutura , Microscopia Crioeletrônica/métodos , DNA/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Cromossomos Bacterianos , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Dimerização , Escherichia coli/metabolismo , Técnicas Genéticas , Genoma Bacteriano , Complexos Multiproteicos/química , Photorhabdus , Ligação Proteica , Conformação Proteica , Domínios Proteicos
15.
Open Biol ; 11(11): 210261, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784790

RESUMO

DNA end protection is fundamental for the long-term preservation of the genome. In vertebrates the Shelterin protein complex protects telomeric DNA ends, thereby contributing to the maintenance of genome integrity. In the Drosophila genus, this function is thought to be performed by the Terminin complex, an assembly of fast-evolving subunits. Considering that DNA end protection is fundamental for successful genome replication, the accelerated evolution of Terminin subunits is counterintuitive, as conservation is supposed to maintain the assembly and concerted function of the interacting partners. This problem extends over Drosophila telomere biology and provides insight into the evolution of protein assemblies. In order to learn more about the mechanistic details of this phenomenon we have investigated the intra- and interspecies assemblies of Verrocchio and Modigliani, two Terminin subunits using in vitro assays. Based on our results and on homology-based three-dimensional models for Ver and Moi, we conclude that both proteins contain Ob-fold and contribute to the ssDNA binding of the Terminin complex. We propose that the preservation of Ver function is achieved by conservation of specific amino acids responsible for folding or localized in interacting surfaces. We also provide here the first evidence on Moi DNA binding.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Ligação a Telômeros/metabolismo , Animais , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Modelos Moleculares , Mutação , Conformação Proteica , Homologia Estrutural de Proteína , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética
16.
J Biol Chem ; 297(6): 101351, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715126

RESUMO

Bromodomain adjacent to zinc finger domain protein 2A (BAZ2A) (also called transcription termination factor-1 interacting protein 5), a key component of the nucleolar remodeling complex, recruits the nucleolar remodeling complex to ribosomal RNA genes, leading to their transcriptional repression. In addition to its tandem plant homeodomain-bromodomain that is involved in binding to acetylated histone H4, BAZ2A also contains a methyl-CpG-binding domain (MBD)-like Tip5/ARBP/MBD (TAM) domain that shares sequence homology with the MBD. In contrast with the methyl-CpG-binding ability of the canonical MBD, the BAZ2A TAM domain has been shown to bind to promoter-associated RNAs of ribosomal RNA genes and promoter DNAs of other genes independent of DNA methylation. Nevertheless, how the TAM domain binds to RNA/DNA mechanistically remains elusive. Here, we characterized the DNA-/RNA-binding basis of the BAZ2A TAM domain by EMSAs, isothermal titration calorimetry binding assays, mutagenesis analysis, and X-ray crystallography. Our results showed that the TAM domain of BAZ2A selectively binds to dsDNA and dsRNA and that it binds to the backbone of dsDNA in a sequence nonspecific manner, which is distinct from the base-specific binding of the canonical MBD. Thus, our results explain why the TAM domain of BAZ2A does not specifically bind to mCG or TG dsDNA like the canonical MBD and also provide insights for further biological study of BAZ2A acting as a transcription factor in the future.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , RNA/metabolismo , Proteínas Cromossômicas não Histona/química , DNA/química , Metilação de DNA , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , RNA/química
17.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585666

RESUMO

Structural Maintenance of Chromosomes (SMC) complexes have ubiquitous roles in compacting DNA linearly, thereby promoting chromosome organization-segregation. Interaction between the Escherichia coli SMC complex, MukBEF, and matS-bound MatP in the chromosome replication termination region, ter, results in depletion of MukBEF from ter, a process essential for efficient daughter chromosome individualization and for preferential association of MukBEF with the replication origin region. Chromosome-associated MukBEF complexes also interact with topoisomerase IV (ParC2E2), so that their chromosome distribution mirrors that of MukBEF. We demonstrate that MatP and ParC have an overlapping binding interface on the MukB hinge, leading to their mutually exclusive binding, which occurs with the same dimer to dimer stoichiometry. Furthermore, we show that matS DNA competes with the MukB hinge for MatP binding. Cells expressing MukBEF complexes that are mutated at the ParC/MatP binding interface are impaired in ParC binding and have a mild defect in MukBEF function. These data highlight competitive binding as a means of globally regulating MukBEF-topoisomerase IV activity in space and time.


Assuntos
Ligação Competitiva , Proteínas Cromossômicas não Histona/química , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/química , Escherichia coli/química
18.
Cell ; 184(19): 4904-4918.e11, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433012

RESUMO

Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.


Assuntos
Proteína B de Centrômero/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Evolução Biológica , Sistemas CRISPR-Cas/genética , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/química , Cromossomos de Mamíferos/metabolismo , Feminino , Heterocromatina/metabolismo , Cinetocoros/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Oócitos/metabolismo , Domínios Proteicos
19.
Science ; 373(6552): 306-315, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437148

RESUMO

Mammalian SWI/SNF (mSWI/SNF) adenosine triphosphate-dependent chromatin remodelers modulate genomic architecture and gene expression and are frequently mutated in disease. However, the specific chromatin features that govern their nucleosome binding and remodeling activities remain unknown. We subjected endogenously purified mSWI/SNF complexes and their constituent assembly modules to a diverse library of DNA-barcoded mononucleosomes, performing more than 25,000 binding and remodeling measurements. Here, we define histone modification-, variant-, and mutation-specific effects, alone and in combination, on mSWI/SNF activities and chromatin interactions. Further, we identify the combinatorial contributions of complex module components, reader domains, and nucleosome engagement properties to the localization of complexes to selectively permissive chromatin states. These findings uncover principles that shape the genomic binding and activity of a major chromatin remodeler complex family.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Cromossômicas não Histona/química , Código das Histonas , Histonas/química , Histonas/metabolismo , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Mutação , Nucleossomos/química , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fatores de Transcrição/química
20.
Elife ; 102021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309513

RESUMO

The cohesin complex topologically encircles DNA to promote sister chromatid cohesion. Alternatively, cohesin extrudes DNA loops, thought to reflect chromatin domain formation. Here, we propose a structure-based model explaining both activities. ATP and DNA binding promote cohesin conformational changes that guide DNA through a kleisin N-gate into a DNA gripping state. Two HEAT-repeat DNA binding modules, associated with cohesin's heads and hinge, are now juxtaposed. Gripping state disassembly, following ATP hydrolysis, triggers unidirectional hinge module movement, which completes topological DNA entry by directing DNA through the ATPase head gate. If head gate passage fails, hinge module motion creates a Brownian ratchet that, instead, drives loop extrusion. Molecular-mechanical simulations of gripping state formation and resolution cycles recapitulate experimentally observed DNA loop extrusion characteristics. Our model extends to asymmetric and symmetric loop extrusion, as well as z-loop formation. Loop extrusion by biased Brownian motion has important implications for chromosomal cohesin function.


When a cell divides, it has to ensure that each of its daughter cells inherits one copy of its genetic information. It does this by duplicating its chromosomes (the DNA molecules that encode the genome) and distributing one copy of each to its daughter cells. Once a cell duplicates a chromosome, the two identical chromosomes must be held together until the cell is ready to divide in two. A ring-shaped protein complex called cohesin does this by encircling the two chromosomes. Cohesin embraces both chromosome copies, as they emerge from the DNA replicating machinery. The complex is formed of several proteins that bind to a small molecule called ATP, whose arrival and subsequent breakdown release energy. Cohesin also interacts with DNA in a different way: it can create loops of chromatin (the complex formed by DNA and its packaging proteins) that help regulate the activity of genes. Experiments performed on single molecules isolated in the laboratory show that cohesin can form a small loop of DNA that is then enlarged through a process called DNA loop extrusion. However, it is not known whether loop extrusion occurs in the cell. Although both of cohesin's roles have to do with how DNA is organised in the cell, it remains unclear how a single protein complex can engage in two such different activities. To answer this question, Higashi et al. used a structure of cohesin from yeast cells gripping onto DNA to build a model that simulates how the complex interacts with chromosomes and chromatin. This model suggested that when ATP is broken down, the cohesin structure shifts and DNA enters the ring, allowing DNA to be entrapped and chromosomes to be bound together. However, a small change in how DNA is gripped initially could prevent it from entering the ring, creating a ratchet mechanism that forms and enlarges a DNA loop. This molecular model helps explain how cohesin can either encircle DNA or create loops. However, Higashi et al.'s findings also raise the question of whether loop extrusion is possible inside cells, where DNA is densely packed and bound to proteins which could be obstacles to loop extrusion. Further research to engineer cohesin that can only perform one of these roles would help to clarify their individual contributions in the cell.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Cromossomos/química , DNA/química , Adenosina Trifosfatases/química , Cromatina/química , Biologia Computacional , Modelos Moleculares , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...